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1. Introduction

Recently, a quantum foam picture of topological string theory has been discovered [1, 2].

According to this duality, A-model topological string amplitudes on C
3 and on more general

toric Calabi-Yau manifolds can be computed by a statistical model of a melting crystal.

The crystal is a physical picture of the A-model target space Kahler gravity, and as a
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quantum foam description, it captures the geometry up to very short distances. The

mathematical side of the correspondence is the Donaldson-Thomas theory reformulation

of Gromov-Witten invariants [3].

In particular the partition function of the melting crystal computes closed string A-

model amplitudes. This was explicitly verified for C
3 [1], and for more general non-compact

geometries [2]. This duality can be further extended by introducing non-compact brane

probes in the geometry. Such brane probes were found to correspond to defects in the C
3

crystal [6].

It is also interesting to study brane probes in the crystal model of conifold geometry.

There are two ways to build a crystal for the conifold: in the first way [2] one glues

together two pieces of C
3 geometries, in the second method of [5] one makes use of the

slicing suggested by the open string description. It is the latter construction we use in this

paper. Here the crystal is like the C
3 model, but ending in a wall in one direction.

The conifold crystal is particularly interesting because it is a clear example of open-

closed duality. As is well-known, the closed topological A-model on the resolved conifold is

dual to Chern-Simons theory on S3 [7]. Further, the natural observables of Chern-Simons

theory are Wilson loop operators, related to knot and link invariants in the 3-manifold S3.

As is described in [8], to each knot intersecting the S3 we can associate a lagrangian cycle,

over which probe branes can be wrapped. Adding a Wilson loop observable along a knot in

the Chern-Simons side thus corresponds to inserting non-compact lagrangian brane probes

in the closed string geometry.

It is then an interesting question how various Chern-Simons knot and link invariants

are encoded in the crystal model of conifold. The crystal model is a simple statistical

model of an infinite crystal with a wall in one direction. Non-compact branes correspond

to fermionic operators in the transfer matrix formulation of the crystal, in agreement with

the general picture that non-compact D-branes in the topological B-model are fermions.

Operations in the crystal, such as the computation of amplitudes of non-compact branes

are therefore easy. These amplitudes are then natural generating functions of certain knot

invariants.

In this paper we investigate the crystal picture of non-compact brane insertions as

generating knot expansions. Earlier work in this direction includes [5], where it was com-

puted that insertion of a single brane corresponds to the unknot invariant in Chern-Simons

theory, and related observations about the connection of the crystal and topological vertex

formalism in [6].

In section 2 we analyze the C
3 non-compact brane amplitudes. As C

3 is the limit of

the conifold when the Kahler parameter is sent to infinity, these amplitudes are generating

functions of the leading part for certain knot invariants. In particular, inserting two branes,

one on each leg of the crystal generates the leading part of Hopf link invariants. The more

general case of many brane insertions generates the leading part of Hopf link invariants

in arbitrary representations. In fact, we find that the many brane amplitudes can be

viewed alternatively as generating Hopf link tensor product representations, corresponding

to Young diagrams with a single row. This latter point of view relates the crystal expansion

to the topological vertex formulation of the brane amplitudes explicitly.
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In section 3 we consider the conifold model of the crystal. In particular, we discuss

how to generate the full unknot invariant in the conifold, and derive the Ooguri-Vafa

generating function. In section 4 we introduce a crystal with two walls and compute the

partition function of a single brane insertion.

These non-compact brane amplitudes can also be derived in the topological vertex

formulation. We compute and compare the same brane amplitudes in the A-model vertex

formulation, where they are naturally expressed as knot expansions. We verify the crystal

and vertex results agree. While the crystal framework is schematically simple to use, the

summation of vertex amplitudes in many cases is complicated. The crystal then gives a

simple and natural closed expression for the vertex results. The comparison of crystal

amplitudes with A-model topological vertex results is discussed in section 5. In section 6

we compare one nontrivial crystal amplitude with B-model topological vertex, also finding

agreement.

Finally, section 7 contains a summary and discussion., where we consider the connec-

tion of the crystal brane amplitudes (open Donaldson-Thomas invariants), Chern-Simons

invariants and Gopakumar-Vafa invariants. In particular we conjecture that free energy

associated to the crystal amplitudes can be simply expressed as a Gopakumar-Vafa expan-

sion. Thus D-brane degeneracies are simply encoded in the crystal free energy.

2. Knot invariants from the crystal

The Calabi-Yau crystal is defined by a statistical sum over three dimensional partitions [1],

where partitions are weighted by q#boxes, and q = e−gs .

We will first consider the geometry C
3. In this case the crystal is understood as filling

the positive octant of R
3, which is a toric base of C

3. One way to imagine the 3d crystal is

to build it from diagonal slices of two dimensional partitions. To assemble to 3d partitions,

the diagonal slices have to satisfy the interlacing condition [1]. A simple way to compute

the crystal partition function is the transfer matrix formalism of [1]. In this formalism we

assign a fermionic Fock space to each two dimensional diagonal slice. To construct the

crystal in operator language, we use bosonization of the chiral fermion ψ(z) =: eφ(z) :,

and the creation/annihilation part of the bosonic vertex operator, Γ±(z). In this way the

crystal partition function is built as [1]

Z(q) =
∑

3d partitions

q#boxes = 〈0|
∞
∏

m=1

Γ+(qm−1/2)

∞
∏

n=1

Γ−(q−n+ 1
2 ) |0〉

From the commutation relations

Γ+(z)Γ−(z′) = (1 − z/z′)−1Γ−(z′)Γ+(z)

it is straightforward to see that the partition function is the McMahon function M(q)

Z(q) = M(q) =

∞
∏

n=1

(1 − qn)−n.
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Figure 1: Three lagrangian branes inserted on the positive slice and two lagrangian antibranes

inserted in the negative slice of the toric geometry of the C3 crystal.

In the B-model picture non-compact lagrangian probe branes can be thought of as

fermions inserted in the geometry. These fermions are virtually free chiral fermions except

they transform between different patches with Fourier transformation [9]. The correspond-

ing crystal description of probe branes are fermionic operators [6]1

ΨD(z) = Γ−1
− (z)Γ+(z).

Similarly, anti-branes are represented by

ΨD̄(z) = Γ−(z)Γ−1
+ (z).

A lagrangian probe brane with geometry S1 × R
2 (with crystal axis (x, y, z))

y = x + u = z + u, u = gs(N + 1/2) > 0

ending on the y axis at distance u is described inserting a fermionic operator ΨD,y(e
−u) at

the slice t = N + 1. Similarly, a brane at distance v on the x-axis is described by ΨD,x(e
v)

at the negative side of the diagonal t = −(N + 1) (figure 1).

Inserting m lagrangian branes at distances gs(Ni +
1
2 ) (i = 1 . . . m) on the y axis, and n

lagrangian anti-branes2 on the x-axis at distances gs(Mj + 1
2), (j = 1 . . . n), as first derived

in [6], gives

Z(a1, . . . an; b1 . . . bm; q) =
〈

ΨD̄,x(b1) . . . ΨD̄,x(bn)ΨD,y(a1) . . . ΨD,y(am)
〉

(2.1)

= M(q)





m
∏

i=1

n
∏

j=1

L(ai, q)L(bj , q)

(1 − aibj)









∏

i>j

(1 − ai/aj)(1 − bi/bj)



 .

1For the crystal we use p=0 framing.
2We could of course have inserted branes, which would cause a change of framing difference in the end

result.
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Here L(ai, q) for ai = qNi+
1
2 denotes the quantum dilogarithm

L(ai, q) =

∞
∏

i=1

(1 − qn+Ni) =
∑

n

an
i hn(qρ), (2.2)

which can also be expressed in terms of the complete symmetric polynomials (defined in

appendix A). The quantum dilogarithm is the brane wavefunction, as also can be seen from

direct disk amplitude computation [11], as well as from the insertion of a fermionic operator

to the B-model geometry corresponding to the limit shape of the crystal [9]. The additional

factors of type (1 − ai/aj) and (1 − aibj) correspond to strings stretched between branes.

We will explicitly see later how these arise in the A-model topological vertex picture.

In the following we will re-interpret this expression as a generating function of certain

knot invariants in arbitrary representations. As C
3 can be thought of as a limit of the

conifold when its Kahler parameter t = gsN → ∞, by geometric transition we expect

to see the leading part of knot invariants. We are then probing the invariants of U(∞)

Chern-Simons theory. More precisely, from the geometric picture of the lagrangian branes

with topology S1 × R
2 we expect to find unknot and Hopf link invariants. As the crystal

result is written entirely in terms of dilogarithms and simple prefactors from the stretched

strings, it is not immediately obvious that these would provide the generating functions for

more complicated link invariants, for example for Hopf link invariants in tensor product

representations. It will turn out that the simplicity of crystal results is partly due to a

particularly natural framing choice.

2.1 Single unknot

Consider first a single brane on the y axis. In this case, we have

Z(a, q) = M(q)L(a, q).

Normalized by M(q), it is indeed the leading part of the generating function for unknot

invariants as computed in Chern-Simons theory after the geometric transition [8]. It is also

explicitly seen as a generating function by expanding

L(a, q) = e
P∞

n=1
an

n[n] = 1 +
a

(q
1
2 − q−

1
2 )

+ a2 q2

(q2 − 1)(q − 1)
+ . . .

=
∑

R−one row

WR•a
|R| (2.3)

Here the notation is [n] = qn/2 − q−n/2, and the sum is rewritten as a sum over represen-

tations R. WR• are the unknot invariants in zero framing, and the summation runs over

one row representations only, so that 1 = ¤, 2 = ¤¤, etc. So a single brane inserted in the

C3 crystal computes the generating function of the leading part of unknot invariants, for

one row representations.

– 5 –



J
H
E
P
0
1
(
2
0
0
6
)
0
4
0

2.2 Hopf link

Inserting an antibrane on x-axis and a brane on y-axis gives the generating function of

Hopf link invariants for single row representations. Expanding the normalized part of the

partition function

Z̃(a, b, q) =
Z(a, b, q)

M(q)
=

L(a, q)L(b, q)

(1 − ab)
(2.4)

gives

Z̃(a, b, q) =
∑

R,P − one row

q
κR+κP

2 WRtP ta|R|b|P | (2.5)

where κR = |R| + ∑

i Ri(Ri − 2i), for a general representation. In the summation we only

have one row representations. We will later prove this expansion by comparing with the

topological vertex, and the q-dependent prefactors will be seen as vertex framing factors

(−1, 0): i.e. a brane at framing −1 and an antibrane at framing 0. Alternatively, when

expressed in terms of q−1 this expansion gives Hopf Link coefficients with knot framing

(−1,−1).

2.3 Hopf link with many rows

In the general case, for n branes on the y-axis and m antibranes on the x-axis the normalized

partition function (2.1) generates the leading part of Hopf link coefficients with (n,m) rows

Z̃(a1, . . . an; b1, . . . bn; q) =
∑

R1,...Rn

∑

P1,...Pm

q
κR+κP

2 WP tRta
|R1|
1 . . . a|Rn|

n b
|P1|
1 . . . b|Pm|

m (2.6)

where R = (Rn, . . . , R1) and P = (Pm, . . . P1) are n and m row representations respectively.

The last summation also contains “improper” Young- diagrams. For a proper Young di-

agram (Rn, . . . , R1), we must have R1 ≤ R2 . . . ≤ Rn. Our summation contains also a

finite number of terms where this condition is not satisfied, but these improper contribu-

tions can still be formally written using the definitions of Schur functions and Casimir κR.

Appendix B contains a partial proof of this formula (done for a simplified case) as well as

details on the improper contributions.

While here it appears that the crystal generates Hopf link invariants in arbitrary

representations, when comparing with the topological vertex, we will find the same crystal

partition function with a number of branes inserted on each leg can be viewed as generating

more complicated link invariants, corresponding to the tensor product representations of

Hopf link in one-row representations. We will return to this point in section 5, where the

crystal partition function as a knot generating function will be re-examined.

3. Conifold crystal

In the following we will examine how to obtain knot invariants from the crystal model of

resolved conifold O(−1) ⊕ O(−1) → P
1. The crystal melting model describing topological

– 6 –
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Figure 2: The toric geometry of the conifold crystal ending in a wall at the y axes at distance

corresponding to the Kahler parameter t.

A-model on this geometry was obtained using the large N dual Chern-Simons theory in [5].

The geometry of the crystal reflects the toric diagram of the resolved conifold, and it is

obtained by inserting a wall in one direction. We will insert the wall at the positive slice

N , constructing the conifold geometry with Kahler parameter t = gsN , which we often

refer to as Q = e−t = qN (figure 2).

The partition function of this crystal model is thus obtained as

ZP 1
(q,N) = 〈0|

∞
∏

m=1

Γ+(qm−1/2)

N
∏

n=1

Γ−(q−(n−1/2))|0〉 = M(q) e
−

P

k
Qk

k[k]2 (3.1)

in agreement with the topological vertex result (C.12) [4, 12]. Taking the Kahler parameter

t → ∞ gives back the partition function of the C
3 crystal. Non-compact lagrangian branes

in the crystal are again defects described by fermionic operators.

3.1 Full unknot invariant

Unknot invariants with many row representation can be generated by inserting a number of

branes on the non-compact leg of the conifold crystal. This is analogous to the topological

vertex picture as will be seen in section 5. Since now we have the full conifold geometry,

we will get the full unknot invariants, unlike in the C
3 geometry which could only see the

leading part of knot invariants (with t → ∞).

Including m antibranes at positions ai = qNi+1/2, i = 1 . . . m, at the non-compact leg

their normalized partition function can be written as3

Z̃P 1

D (a1, . . . an) =
[

m
∏

i<j

(1 − ai

aj
)
]

m
∏

i=1

L(ai, q)

L(aiQ, q)
. (3.2)

3Here normalization is with the conifold partition function and additional ξ(q) =
Q∞

i=1 1/(1− qi) factors

which has to be dropped in comparison with topological string amplitudes.
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Taking a single brane first at a = qN1+1/2 gives the full unknot generating function for

single row representations by the rearrangement

Z̃P 1

D (a) =
L(a, q)

L(aQ, q)
=

∞
∑

n=0

an
(

n
∑

i=0

hi(q
ρ)hn−i(Qq−ρ)

)

=

=
∞

∑

n=0

anhn(qρ, Qq−ρ). (3.3)

In the first equality the expression of dilogarithm in terms of symmetric polynomials is

used given (2.2), in the second equality (A.16) was used. The final coefficient hn(qρ, Qq−ρ)

is precisely the full unknot invariant (quantum dimension) for one-row representation, R =

(n, 0 . . . 0). Taking m branes and expanding in their positions (a1, . . . am) gives similarly

unknot invariants with m-row representation. The proof of this is completely analogous to

the induction included in appendix B.

We note that the full unknot invariants were extracted before in [5], following a different

prescription based on branes inserted in the compact leg of P
1. Our procedure is different

and is motivated by the topological vertex picture as will be discussed in more detail below.

3.2 Ooguri-Vafa generating function

Chern-Simons theory on S3 is the large N -dual to closed topological string theory on the

resolved conifold. The duality can be seen as a geometric transition [7] - wrapping a large

number of branes on the base S3 of deformed conifold, in the large N limit the geometry

transits to the resolved conifold without branes.

The geometry can be probed by non-compact branes [8]. Wrapping the probe branes

on a lagrangian cycle, intersecting the S3 in a given knot, the worldvolume theory on

the probe branes will also be a Chern-Simons theory. In addition, there are open string

stretched between the probe branes and the original large number of branes wrapping the

S3 and making the geometric transition. Integrating out these degrees of freedom gives

an effective theory on the probes branes, which is Chern-Simons theory with additional

corrections - the Ooguri-Vafa generating function. For a single unknot it is given as [8]

ZOV = exp

[

−
∞

∑

n=1

(e
nt
2 − e

−nt
2 )

n[n]
a−n

OV

]

where [n] = qn/2−q−n/2 as before, and aOV is the parameter of the one-dimensional holon-

omy matrix, that is the integral of holonomy of the Chern-Simons gauge field around the

circle loop (corresponding to the unknot) intersecting the S3. After analytic continuation,4

Za
OV = exp

[

(an
OV + a−n

OV)

n[n]
e−nt/2

]

(3.4)

the Ooguri-Vafa generating function agrees with the topological string amplitude of a probe

brane inserted in the conifold geometry. The topological amplitude can also be derived

4Upper index a denotes analytic.
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considering the relevant open topological string amplitude from the M-theory point of

view of [13]. Alternatively, it can be computed in the topological vertex formulation. We

will consider the latter computation in section 5.

Here we show that inserting a brane in the compact leg of the conifold crystal repro-

duces the Ooguri-Vafa generating function. Inserting an antibrane5 on the compact leg of

the crystal at the positive slice at a = qN0+1/2 we obtain

ZP 1

D,y(q,N0, N) = ξ(q)M(q) e
−

P

n>0
qn(N+1)

n[n]2 e
P

n>0
qn(N0+1/2)+qn(N−N0+1/2)

n[n]

= ξ(q)ZP 1
L(a, q)L(Q/a, q), (3.5)

where ZP 1
is given in (3.1), and now the Kahler parameter gets shifted to t = gs(N +1) due

to brane insertion, so that Q = qN+1. This is indeed the Ooguri-Vafa generating function

with the identifications

aOV = qNOV+ 1
2 NOV = N0 −

N

2

i.e. the position of brane in the geometry is measured from the middle point of the compact

leg. We note that the crystal provides a straightforward way to compute this result.

Inserting more branes on the compact leg would correspond to inserting more stacks

of branes in the geometry. The generating function can be easily computed on the crystal

side. On the other hand, in the crystal geometry it is not clear how to incorporate more

branes in a single stack (thus increasing the holonomy matrix of a probe).

It is a natural question to ask if inserting a number of branes on each leg of the

conifold crystal would provide complete Hopf link invariants with many rows, similarly to

the leading part of Hopf link invariants obtained from C
3. For example, inserting a brane

on the compact leg at position a and an antibrane on the non-compact leg at position b in

the conifold crystal one gets

ZP 1

D; D̄(q,N) = ZP 1 L(a, q)L(b, q)L(Q/a, q)

L(bQ, q)(1 − ab)
, (3.6)

where again the Kahler parameter gets shifted to t = gs(N + 1) due to brane insertion on

compact leg. Expanding in a and b does not naturally give many row Hopf link invariants.

The reason is seen better in the language of topological vertex, where Hopf link invariants

are associated to having two branes inserted, each on a non-compact leg of the conifold

geometry [12]. In the conifold crystal model a Hopf link would naturally arise from placing

branes on the non-compact x-axis and another on the non-compact z-axis. In the diagonal

slicing of the crystal we work in, the latter branes are not natural to insert. Working out

the operators for insertion of such branes, and generating full Hopf link invariants from the

crystal is left for future work.

5An antibrane is chosen for convenience here. When matching the crystal to the topological vertex

result, we will choose the convention qvertex = 1/qcrystal, which turns an antibrane in the crystal to a brane

in the vertex.

– 9 –



J
H
E
P
0
1
(
2
0
0
6
)
0
4
0

Figure 3: The toric geometry of the crystal model of P1×P1, with two walls ending at the distances

corresponding corresponding to the Kahler parameters t1 and t2.

4. Calabi-Yau crystal with two walls

The local conifold model for the crystal of [5] can be easily generalized to represent the

geometry with two neighbouring P
1. This is naturally described by a crystal with two

walls, on both the positive and negative slice, at distance t1 = N1gs and and t2 = N2gs

respectively, which are the two Kahler parameters of the geometry (figure 3).

The partition function is computed as

Z2 walls(q,N1, N2) = 〈0|
N1
∏

n=1

Γ+(qn−1/2)

N2
∏

m=1

Γ−(q−(m−1/2))|0〉 =

= exp
∑

k>0

(1 − qkN1)(1 − qkN2)

k[k]2
, (4.1)

The factors in the exponent represent (apart from the unity giving McMahon function)

worldsheets wrapping each of the spheres independently, and then both of them simulta-

neously.

Let us now insert a brane on the right compact leg at a position given by a = qN0+1/2,

which gives

Z2walls
D,y = Z2walls ξ(q)L(Q1/a, q)

L(a, q)

L(aQ2, q)
, (4.2)

where again there is a shift of the Kahler parameter corresponding to the leg the brane is put

on. It is also interesting to compare this result with a brane in the resolved conifold (3.5).

The essential difference is the dilogarithm in the denominator, which represents worldsheet

wrapping a part of right P
1 (of length N0) and the whole left P

1 (of length N2).

It would be very interesting to generalize this construction by gluing together pieces

of crystals to get an arbitrary toric geometry.
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5. Comparison with the topological vertex

In this section we show that the amplitudes computed by crystal models with one or two

walls, and multiple brane insertions, are indeed consistent with the topological string re-

sults. We will perform the topological vertex calculations and appropriately match vertex

and crystal moduli, and find a perfect dictionary between these two points of view. Most

vertex calculations are performed in A-model language [4], but we also provide one non-

trivial example of a B-model amplitude [9].

Thus, let us focus on the A-model topological vertex. In this formulation the target

space is a non-compact toric Calabi-Yau 3-fold, and topological amplitudes can be com-

puted from a planar “Feynman diagram” which encodes the geometry of the 3-fold. Each

edge of such a diagram corresponds to a shrinking cycle of a toric fibration, and compact

intervals represent local P
1’s in Calabi-Yau geometry. The A-model vertex is a trivalent

vertex for such a diagram and it encodes the structure of topological string in a single C
3

patch. The full toric 3-fold can be built from C
3 patches, and the amplitudes can be found

by gluing vertexes according to the relevant gluing rules. The gluing process is implemented

by a careful analysis of open strings ending on stacks of lagrangian branes put on the axes.

The vertex is most conveniently expressed in a representation basis as CR1R2R3, with each

representation corresponding to a stack of branes on a single axis of C
3 patch.

Apart from gluing string amplitudes, the vertex allows also to compute open string

amplitudes in presence of a particular class of special lagrangian branes of topology C×S
1.

The projection of these branes onto the plane of a toric diagram is a semi-infinite line with

its endpoint attached to one edge of the diagram. For example, the partition function for

inserting 3 non-compact branes on each leg of C
3 is computed as

Z(V1, V2, V3) =
∑

R1,R2,R3

CR1,R2,R3 TrR1V1 TrR2V2 TrR3V3 ,

where Vi are sources (holonomy matrices) corresponding to inserted branes, and in general

can be given by infinite matrices. This amplitude is written in the so-called canonical

framing. In general, the vertex exhibits a framing ambiguity, which is a statement that

one needs to specify one integer for each stack of branes to fully determine the amplitude.

This is intimately connected with framing ambiguity in knot theory, and can be traced by

a derivation of the vertex from Chern-Simons theory. All necessary details about computa-

tional framework for A-model, including framing ambiguity and other subtleties, are given

in appendix C.

To match crystal and vertex results, a few important issues have to be taken into

account. Firstly, the topological vertex is normalized in such a way that the McMahon

function M(q) of C
3 does not arise from calculations. Secondly, we need to choose some

particular framing; usually this is (−1) framing on one leg and the canonical one for other

legs. Then, we have to take holonomy matrices Vi to be one dimensional

Vi = ai = qNi+1/2
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so in this sense the crystal can see only a fraction of what the full vertex computes. On

the other hand, the crystal calculations are much simpler, so this is quite an advantage of

using it.

If we have a single brane on one leg, then the above ai become simply moduli seen

in the crystal. For more branes on one leg, we have to introduce parameters which give

their positions, which must be combined with holonomy matrices appropriately. We will

see examples of this in what follows.

Finally, we perform substitution

q → 1

q
= qcrystal (5.1)

in vertex result to map crystal-branes to vertex-branes. In fact, in topological string such

an operation exchanges branes to antibranes [4], and what we call branes and antibranes

can be regarded just as a convention. Not performing the q inversion would result in

mapping crystal branes to vertex antibranes. We choose the former point of view. In fact,

the q inversion is important only for configurations with branes; the partition functions

without any branes is invariant under q → 1/q.

Let us note, that while some of the topological vertex amplitudes we consider here

were already written in the literature, it is not at all obvious that these amplitudes given

by topological vertex rules in terms of sums over representations can be resummed into

compact expressions, involving just dilogarithms and simple polynomials (as we have seen

from crystal point of view). This fact was also noticed in [10]. Nonetheless, with the proper

vertex framing chosen we rederive all these crystal results (which are in crystal canonical

framing).

By construction, the topological vertex includes the correct worldsheet instantons

which can appear in any toric construction, with or without lagrangian probe branes.

The contributions from specific instantons which stretch between probe branes can be read

off from the form of the free energy. Specifically, the Li1 function in the factor

(1 − ab) = exp (Li1(ab)) , (5.2)

appearing in all calculations involving more than one probe brane, shows that this is a

contribution from annuli instantons and not of any higher genera instantons.

5.1 Resolved conifold results

We shall first test the conifold crystal results. Then, C
3 crystal results will naturally follow

then from taking the Kahler parameter to infinity. The resolved conifold partition function

ZP 1
(C.12) has been computed before in several places [2, 12], and it is in agreement with

the crystal result.

Let us then compute brane configurations corresponding to those found in the crystal

language. We start with a single brane on the external leg of the conifold in canonical

framing

ZP 1

D−ext(V ) =
∑

P,R

C•RtP (−Q)|R|CR•• TrP V. (5.3)
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Using identities on Schur functions we get (see also [12])

ZP 1

D−ext(V ) = ZP 1
∑

P

sP (Qq−ρ, qρ)TrP V. (5.4)

Taking the matrix V to be one dimensional V = a = qN0+1/2, and using TrR(a) = sR(a)

and formula (A.15), we obtain

ZP 1

D−ext = ZP 1
∑

R

sR(Qq−ρ, qρ) sR(a) = ZP 1 L(aQ, qcrystal)

L(a, qcrystal)
. (5.5)

It is important to note, that the sum is in fact performed over representations correspond-

ing to diagrams with only one row (for a single number a and for any representation

given by a diagram with more than one row srep. with >1 rows(a) = 0). Taking into ac-

count the mapping (5.1) we find perfect agreement with the normalized crystal result for

antibranes (3.2).

A single brane can also be situated on the compact leg of the conifold at position gsD

ZP 1

D−int =
∑

R,QL,QR

C••R⊗QL(−1)sqfe−LCRt⊗QR•• TrQLV TrQRV −1.

It is possible to perform resummation for V = a = qN0+1/2 and if (−1) framing is chosen.

If we follow the crystal convention and set the size of the compact leg to be N + 1 (the

shift is responsible for brane insertion), and absorb the brane position into its modulus by

defining

N ′
0 = D + N0, a′ = qN ′

0+
1
2 , (5.6)

we get after substitution (5.1)

ZP 1

D,y = ZP 1
(N + 1)L(a′, qcrystal)L(Q/a′, qcrystal),

which is the same result as (3.5).

It is also possible to insert several branes on the external or internal leg. For example,

for M branes on the compact leg in (−1) framing we take Vi = ai = qNi+1/2 and then get

analogous factors as above. The Kahler parameter gets modified to N + M , and brane

positions Di get absorbed similarly as above into N ′
i and modified moduli a′i. We also have

to take the stretched strings between the branes into account (see (C.16)). All these factors

combine to

ZP 1

M branes = ZP 1
(N ′)





∏

i<j

(

1 − a′i
a′j

)





[

M
∏

i=1

L(a′i, qcrystal)L(Q/a′i, qcrystal)

]

, (5.7)

which is the same as the crystal result (4.42) in [5].
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Figure 4: The toric diagram of the conifold of Kahler parameter t, with a brane inserted at distance

D on the compact leg and an antibrane inserted on a non-compact leg.

5.1.1 Brane and antibrane on two legs

Let us put one brane on the compact leg of the resolved conifold at distance D with

holonomy matrix V1, and the second brane on non-compact leg with holonomy V2 (figure 4).

We also take one-dimensional holonomy matrices Vi = qNi+1/2, and absorb the position

on the compact leg into V1

a = qD+N1+1/2 = qN ′
1+1/2, b = qN2+1/2. (5.8)

The partition function in (−1, 0) framing is

ZP 1

Dy;D̄x =
∑

CR⊗QL,P t,•(−1)|P |(−Q)|R|CRt⊗QR••sQL
(a)sQR

(Q/a)sP (b)

[

(−1)|QL⊗R|+|QR⊗Rt|q−
κQL⊗R+κ

QR⊗Rt

2

]

=

= L(Q/a, q−1)
∑

sRt(−Qqρ)sQL
(−a)sP (−b)

cα
RQL

sαt/η(q
ρ)sP t/η(q

ρ)q−
κ

Rt
2 ,

where the first dilog arises from QR summation. Now summation over P produces another

dilog, and we can also sum over QL and use (A.16) to get

ZP 1

Dy;D̄x = L(Q/a, q−1)L(b, q−1)L(a, q−1)
∑

sR(−Qqρ)sη/α(−a)sη(−b)sR/α(qρ),

Performing the remaining sums over R, η and finally α gives the crystal result (3.6) (af-

ter (5.1) transformation)

ZP 1

Dy;D̄x =
ZP 1

1 − ab

L(Q/a, qcrystal)L(b, qcrystal)L(a, qcrystal)

L(bQ, qcrystal)
. (5.9)

Here we contrast the simplicity of crystal computation with the extensive use of summation

formulas and Schur identities in the above vertex computation.

5.2 Double P
1

In this section we rederive two-wall crystal amplitudes from the topological vertex perspec-

tive. At first we compute the partition function. Denoting the sizes of the right and the
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Figure 5: The toric diagram corresponding to a brane inserted in the geometry P1 × P1 (with

Kahler parameters t1 and t2) in the right compact leg at distance D from the middle point.

left leg by ti (and Qi = e−ti = qNi), respectively for i = 1, 2, the vertex rules and some

rearrangements give

ZP 1P 1
=

∑

P,R

CP t••(−Q2)
|R|CPR•(−Q1)

|P |CRt•• =

=
∑

η

[

∑

µ

sµ(qρ)sη(Q1q
−ρ)sµ(Q1q

−ρ)
]

[

∑

ν

sν(q
ρ)sη(Q2q

−ρ)sν(Q2q
−ρ)

]

=

= exp
∑

k>0

−Qk
1 − Qk

2 + (Q1Q2)
k

k[k]2
, (5.10)

This result is the same as the crystal expression (4.1), up to McMahon function invisible

for the vertex. Since this is a partition function without any brane insertions, it is also

unaffected by q inversion.

The vertex computation with a brane on the right compact leg of double P
1, in (-1)

framing also agrees with crystal result. Inserting this brane at position D from the middle

vertex (figure 5), the topological vertex rules lead to the amplitude.

ZP 1P 1

D =
∑

CP t••(−Q2)
|P |CR⊗QL,P,•(−Q1)

|R|CRt⊗QR••

qD|QL|q(N1−D)|QR| TrQL
V TrQR

V −1

[

(−1)|QL⊗R|+|QR⊗Rt|q
−(κQL⊗R+κQR⊗Rt )/2

]

. (5.11)

As before, we take one-dimensional V = qN0+1/2 and absorb the position into V as

a = qD+N0+1/2 = qN ′
0+1/2.
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Performing sums over all representation in the appropriate order leads (after a little effort)

to the result

ZP 1P 1

D = ZP 1P 1 L(Q1/a, qcrystal)L(a, qcrystal)

L(bQ2, qcrystal)
, (5.12)

which is the same as the crystal answer (4.2) after enlarging the size of the right leg to

N1 + 1 due to the brane insertion.

5.3 C
3 amplitudes

The amplitude for several branes on one axis of C
3 can be computed directly from the

vertex rules, but since we already have the conifold result it is easiest to take the N → ∞
limit in (5.7). This also gives result in (−1) framing, and substituting (5.1) we get

ZC3

M branes =
[

∏

i<j

(1 − ai

aj
)
]

M
∏

i=1

L(ai, qcrystal), (5.13)

which is the result for the C
3 crystal, see (2.1). For one brane it reduces to a single

dilogarithm.

For a brane on one leg at position a and antibrane on the other at position b, and in

framing (−1, 0), the vertex gives

ZC3 vertex
D;D̄ (a, b) =

1

1 − ab
L(a, qcrystal)L(b, qcrystal).

which reproduces the crystal answer (2.4). In this case the vertex rules can be expressed

in terms of Hopf link invariants (C.6)

ZC3 vertex
D;D̄ (a, b) =

∑

P,R

WPR(−1)|P |+|R|q−
κP +κR

2 sP (a)sR(b),

so that inversing q (5.1) according to our conventions and using (C.9) proves that this is

the same Hopf link generating function as in the crystal case (2.5).

The calculation for two branes, one in each leg, is similar and also gives the crystal

result in (−1, 0) framing6

ZC3 vertex
D;D = (1 − ab)

L(a, qcrystal)

L(b, qcrystal)
.

The configuration with two branes on one leg and antibrane on the other is slightly

more complicated. The stretched string factors between the two branes on the same leg,

at positions ai = qMi+1/2 (for i = 1, 2) give an (1− a1/a2) factor. The full amplitude, with

antibrane at b = qN1+1/2, and in (−1, 0) framing can be written as

Zvertex
2Dy, D̄x =

(

1 − a1

a2

)

∑

CP1⊗P2,Rt,•sP 1(a1)sP2(a2)sR(b)(−1)|R| ×

6This is also an example of a situation, which can be resummed in canonical framing, with the final

result L(a, q)L(b, q)
1−a

√
q+ab

1−a
√

q
. This result does not agree with the crystal one (in canonical crystal framing),

thus a proper choice of framing is indeed crucial.
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Figure 6: The “necklace” knot invariant generated by the insertion of 2+1 branes. The crystal

only generates representations with a single row.

×
[

(−1)|P1⊗P2|q−
κP1⊗P2

2

]

=

(

1 − a1

a2

)

L(b, q−1)
∑

cα
P1P2

sαt/η(q
ρ)sP1(−a1)sP2(−a2)sη(−b). (5.14)

After performing summations in several steps and substitution (5.1) we recover the crystal

result (2.1)

Zvertex
2Dy, D̄x =

1 − a1
a2

(1 − a1b)(1 − a2b)
L(a1, qcrystal)L(a2, qcrystal)L(b, qcrystal). (5.15)

Thus another way to look at the crystal result (5.15) is provided by the first line in the

expansion of (5.14), which due to (C.6) can be written in terms of Hopf link invariants

(with all components in knot (−1)-framing) as

Zvertex
2Dy, D̄x =

(

1 − a1

a2

)

∑

WP1⊗P2,R,•sP 1(a1)sP2(a2)sR(b)

[

(−1)|P1⊗P2|+|R|q−
κP1⊗P2

+κR
2

]

.

Taking out the stretched string factors (1−a1/a2), the crystal result is seen as a generating

function for 2 + 1 “necklace” knot invariants. This knot is shown in figure 6, arising from

the tensor product representation of the Hopf link. Because of one-dimensional sources

Vi = ai, this is a generating function for representations with one row only.

5.3.1 Two legs of C
3 - general situation

Finally we consider m branes on one leg at positions ai = qMi+1/2, and n antibranes on

the next leg at bi = qNi+1/2. As usual we take all branes in framing (−1), which makes

resummation doable. Using properties of tensor product, the part of the partition function

without factors from strings stretching between branes on the same leg (C.16) (which is

denoted by ’) can be written as

Z ′
m,n̄ =

∑

CP1⊗...⊗Pm, Rt
1⊗...⊗Rt

n,•(−1)
P

i |Ri|
[

(−1)|⊗jPj |q
− 1

2
κ⊗jPj

]

·
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·sP1(a1) . . . sPm(am) · sR1(b1) . . . sRn(bn) =

=
∑

s(P t
1⊗...⊗P t

m)/η(q
ρ)sP1(−a1) . . . sPm(−am) ·

·s(Rt
1⊗...⊗Rt

m)/η(q
ρ)sR1(−b1) . . . sRn(−bn), (5.16)

where it is understood that

s(P t
1⊗...⊗P t

m)/η =
∑

α

cα
P t

1 ...P t
m

sα/η.

The antibrane part takes the form (here we write the partial result for the R summation

only), according to (A.10)

cβ1

Rt
1Rt

2
cβ2

β1Rt
3
. . . c

βn−1

βn−2Rt
n
sβn−1/η(q

ρ)sR1(−b1) . . . sRn(−bn) =

= sβt
1/R1

(−b2)sβt
2/βt

1
(−b3) . . . sβt

n−1/βt
n−2

(−bn)sβn−1/η(q
ρ)sR1(−b1)

= sβt
n−1

(−b1, . . . ,−bn)sβn−1/η(q
ρ)

= L(b1, q
−1) . . . L(bn, q−1)sη(−b1, . . . ,−bn) (5.17)

In the same way, the brane part (P summation separated) contributes

L(a1, q
−1) . . . L(am, q−1)sη(−a1, . . . ,−am) (5.18)

The remaining summation over η in (5.17) and (5.18) gives factors for strings stretched

between all brane/antibrane pairs; also taking into account (C.16) for each pair of branes

(antibranes) on the same leg finally we get (after the q-inversion)

Zm,n̄ =

[(

1 − a1

a2

)

. . .

(

1 − am−1

am

)][(

1 − b1

b2

)

. . .

(

1 − bn−1

bn

)]

1

1 − a1b1
. . .

1

1 − ambn

∏

i

L(ai, qcrystal)
∏

j

L(bj , qcrystal),

and this is the same answer as we found from the crystal (2.1).

This more general case can also be understood as a generating function of Hopf link

invariants corresponding to tensor products of one-row representations, as the first line

of (5.16) can be written using (C.6) as

Z ′
m,n̄ =

∑

WP1⊗...⊗Pm, R1⊗...⊗Rn

[

(−1)|⊗jPj |+|⊗kRk |q
− 1

2
(κ⊗jPj

+κ⊗kRk
)
]

·
·sP1(a1) . . . sPm(am) · sR1(b1) . . . sRn(bn),

where factors from strings stretched between branes on the same leg (C.16) are taken

out. The corresponding knots are shown in figure 7, for the case of four branes and three

antibranes inserted in the geometry.

Thus the crystal generating function can be interpreted in two distinct ways, in the

first way described in section 2 it is the generating function of Hopf link invariants for

representations with several rows. In the second way (as shown here from the topological

vertex point of view) expanded without the stretched string factors it generates necklace

(or tensor product) knot invariants with a single row in knot framing (−1,−1).
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Figure 7: The “necklace” knot invariant generated by the insertion of 4+3 branes in the crystal,

corresponding to the Hopf link tensor product representation.

6. B-model example

In the B-model [9] topological amplitudes are computed on the mirror Calabi-Yau geome-

tries. The mirror geometry is described by the general equation xy − F (u, v) = 0. To

compute the B-model amplitudes we follow the formalism of [9] closely, where the B-model

amplitudes are computed as

〈vac|( branes / antibranes )|V 〉,

where 〈vac| is a vacuum state chosen in a way which ensures that overall fermion number

is zero, and

|V 〉 = exp
∑

k,l≥0

(

aklψ−k−1/2ψ
∗
−l−1/2 + ãklψ−k−1/2ψ̃

∗
−l−1/2

)

|0〉

is a state representing the Riemann surface F (u, v) = 0 branes live on. This Riemann sur-

face might have several asymptotic ends, with branes in each of them; we restrict ourselves

putting branes in two of the patches. The quantities in these two patches are denoted

without and with tilde respectively, and positions of branes are given by e−ui = ai and

respectively bi. In B-model picture branes are represented by fermions with standard mode

expansions, thus in two patches we have

ψ(a) =
∑

k

ψk+1/2 e−(k+1)ui =
∑

k

ψk+1/2a
k+1,

ψ̃(b) =
∑

k

ψ̃k+1/2b
k+1.

Only fermions from the same patch anticommute

{ψ−k−1/2, ψ∗
l+1/2} = δk,l,

and the bare vacuum is annihilated by all positive modes

ψk+1/2|0〉 = ψ∗
k+1/2|0〉 = ψ̃k+1/2|0〉 = ψ̃∗

k+1/2|0〉 = 0 for k ≥ 0.
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Figure 8: Two antibrane and a brane inserted in two asymptotic patches of the mirror B-model

geometry.

In the case of C
3 the state |V 〉 is determined (up to q1/6 factors) by

akl = (−1)lshook(k+1,l+1)(q
ρ),

ãkl = (−1)lq−
κ(l+1)

2 (Wk+1,l+1 − Wk+1Wl+1),

where hook(m + 1, n + 1) is a hook representation with the relevant number of boxes in

its row and column, and Wk+1,l+1 is Hopf link invariant for two symmetric representations

with relevant number of boxes. For symmetric representation, the value of Casimir is

κn = n2 − n.

Now we put two antibranes in one patch (these in framing (−1)) and a single brane in

the other one (figure 8).7 The vacuum should be chosen as 〈vac| = 〈0|ψ̃1/2, and in this case

the only contribution comes from the third coefficient (with 1/2 factor) in the exponent

expansion of |V 〉. Manipulations with fermion operators lead to

〈vac|ψ̃(b)ψ∗(a1)ψ
∗(a2)|V (−1,0)〉 =

=
∑

p,t,r≥0

ãptãr0 bt+1(ar+1
1 ap+1

2 − ap+1
1 ar+1

2 )(−1)−p−rq−
κp+1+κr+1

2 .

Performing the summation gives

〈vac|ψ̃(b)ψ∗(a1)ψ
∗(a2)|V (−1,0)〉 =

−a1a2b

L(a1, q)L(a2, q)L(b, q)

( 1

1 − a2b
− 1

1 − a1b

)

=
a1a

2
2b

2

L(a1, q)L(a2, q)L(b, q)

1 − a1
a2

(1 − a1b)(1 − a2b)
.

We already know that inversing q exchanges branes with antibranes. So if we started

with two branes in the first patch and antibrane in the second, we would get dilogs in

7We could have started with two branes and an antibrane, two antibranes and a brane is just slightly

more convenient for the B-model computations.
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numerator. This agrees with the crystal result (2.1), up to the irrelevant overall a1a
2
2b

2

factor.

7. Summary and discussion

In this paper we investigated the appearance of knot invariants in the construction of

Calabi-Yau crystals. Inserting lagrangian branes, the C
3 crystal naturally generates the

leading part of unknot and Hopf link invariants, with arbitrary number of rows. Compari-

son with the topological vertex gives an alternative view of the crystal generating invariants

for Hopf link for tensor product representations (figure 7) with a single row.

7.1 Connection to Gopakumar-Vafa invariants

The connection to knot invariants is entirely expected from the topological vertex point

of view, which is itself constructed from Chern-Simons knot invariants, using open-closed

duality. However, the crystal is interesting for its simplicity summing the vertex knot

expansions in natural generating functions. These generating functions are always diloga-

rithms and simple prefactors. We can phrase this as the statement that inserting branes

in the crystal generates (open) Donaldson-Thomas invariants (related to open topological

string amplitudes) and here we express these Donaldson-Thomas invariants in terms of

Chern-Simons invariants. We stress the simplicity of the crystal computing these DT knot

generating functions, as compared to other methods.

Open string topological amplitudes can also be derived from Gromov-Witten theory,

by counting holomorphic maps with boundaries in lagrangian submanifolds. These ampli-

tudes can alternatively be computed from the target space point of view using the M-theory

perspective [13], where they contain information about counting of BPS states. Based on

the geometric transition picture of the conifold, the Ooguri-Vafa generating function con-

structed from Chern-Simons invariants can be reformulated in terms of BPS degeneracies

counting D2-branes ending on D4-branes [8] as8

FOV =

∞
∑

n=1

∑

R,Q,s

NR,Q,s

n[n]
en(−tQ+sgs)TrRV n (7.1)

where NR,Q.s are the BPS degeneracies labeled by representation, charge and spin content,

[n] = qn/2 − q−n/2 as before; tQ =
∫

Q k is the area of the corresponding cycle, and V is the

holonomy matrix. For the case of the unknot in S3 this precisely gives the Ooguri-Vafa

unknot generating function

FOV =

∞
∑

n=1

TrV n + TrV −n

n[n]
e−nt/2

The connection between Chern-Simons and Gopakumar-Vafa invariants is elaborated in

the series of works [14].

8The OV conjecture is naturally formulated in the free energy rather than the partition function.
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In the case of closed topological strings, Donaldson-Thomas invariants are new invari-

ants which reformulate the Gromov-Witten theory physically in target space language.

Given that the Calabi-Yau crystal naturally computes the closed and open topological

string amplitudes in target space language, we certainly expect a natural relation to the

partition function and D-brane amplitudes computed by the Gopakumar-Vafa formulation.

In fact, this connection can be explicitly seen in our results already. The crystal brane

amplitudes are naturally given in terms of dilogarithms, and we can use the exponential

expansion of the dilogarithm

L(a, q) = e
P∞

n=1
an

n[n]

to extract the free energy. Recalling that our holonomy matrix is one dimensional, thus

TrV is related to aOV , the free energies of the crystal brane amplitudes clearly are of

the Gopakumar-Vafa form (7.1). This is explicitly checked by the computation of the

Ooguri-Vafa generating function inserting the brane in the conifold crystal in section 3.2.

Since all of the brane amplitudes are written similarly in terms of dilogarithms, we

conjecture the free energies obtained from the crystal brane partition functions (extracted

with the exponentiation formula) are natural expansions in the Gopakumar-Vafa invariants.

Thus according to this the crystal amplitudes also naturally compute D-brane degeneracies

(they can be simply read off from the expression of crystal free energy). This would all

fit in the point of view that the crystal Donaldson-Thomas theory is really a target space

theory, and as such it simply encodes the target space point of view of D-brane amplitudes.

It would be very interesting to explore the connection between the DT, Gopakumar-Vafa

and Chern-Simons invariants in more detail.

7.2 Open questions

There are several open questions related to our work. In particular, we only investigated

the simplest unknot and Hopf link invariants from the crystal point of view. It would

be very interesting to find how more complicated knots are generated from the crystal.

One way to realize this would be to investigate how skein relations are represented in

the crystal language. One can possibly also use the formalism of knot operators to find

the crystal representation of more complicated knots, like for example torus knots. Since

lagrangian brane insertions only produce Hopf link and torus knot invariants, it would be

very interesting to understand if there are natural geometric objects (like combination of

branes, or new classes of branes) which would compute more complicated knots.

Another question is how to represent the full topological open A-model amplitudes in

the crystal. While in the topological vertex one inserts stacks of D-branes, in the crystal we

only used a single D-brane probe in each stack. That is the holonomy matrix seen in the

crystal is one dimensional only, while in the topological vertex it can be arbitrarily large.

Finding the representation of holonomy matrix in the crystal would allow to compute the

full structure of A-model amplitudes, in particular that would give also multiple row tensor

product Hopf link invariants. Introducing the holonomy matrix may have to do with the

generalized fermionic operators found in the crystal in [15].
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Another important open problem is how to extend the crystal amplitude computations

for more complicated toric geometries. Clearly, one has to glue pieces of crystal geometries

to study more complicated toric amplitudes than the double P
1 geometry we studied in this

paper. A gluing prescription for toric diagrams involving a partition function only is given

in [2]. It would be important to understand how to glue pieces of crystals with D-branes

inserted. One way to proceed in this direction is to take guidance from the topological

vertex gluing prescriptions, and the clear-cut relations we found between certain class of

vertex and crystal brane amplitudes in this paper.

Finally, we note that the Chern-Simons model of the crystal may have a natural con-

nection to the Brownian motion picture of [16]. It would be interesting to investigate this

direction further to find a string theory realization of this picture.

Acknowledgments

We are grateful to Robbert Dijkgraaf and Marcos Marino for enlightening discussions. We

also thank Nick Jones, Albrecht Klemm, Asad Naqvi, Takuya Okuda and Jacek PaweÃlczyk

for valuable conversations. P.S. would like to especially thank Robbert Dijkgraaf for all

the support, Amsterdam String Theory group for great hospitality and NWO Spinoza

Grant for assistance. N.H. would like to thank the YITP at Stony Brook and the Research

School for Theoretical Physics at ANU for hospitality. In addition N.H. is supported by a

Fletcher Jones graduate fellowship from USC. The work of A.S. is partially supported by

the Stichting FOM.

A. Symmetric functions

Many of our formulas make use of properties of symmetric functions. Here we summarize

the basic properties and some identities for symmetric functions: Schur polynomials sR,

elementary eR and complete hR symmetric polynomials, Newton polynomials PR.

A symmetric polynomial S depends on a partition R, and its argument is a string of

variables x = (x1, x2, . . .), what we denote by

SR(x) = SR(x1, x2, . . .). (A.1)

By qR+ρ we understand a string such that xi = qRi−i+1/2 for i = 1, 2, . . ., thus

SR(qR+ρ) = SR(qR1−1/2, qR2−3/2, . . .).

In particular

SR(qρ) = SR(q−1/2, q−3/2, . . .). (A.2)

One can concatenate two strings of variables, x = (x1, x2, . . .) and y = (y1, y2, . . .), and

then use it as an argument of a symmetric polynomial, which is denoted by

SQ(x, y) = SQ(x1, x2, . . . , y1, y2, . . .).

One of the simplest examples of symmetric functions are Newton polynomials

PR(x) =
∏

n

PRi(x), where Pn(x) =
∑

i=1

xn
i . (A.3)
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Let us next introduce elementary en(x) and complete symmetric functions hn(x), for

n = 0, 1, 2, . . ., in terms of a generating functions

E(t) =
∞

∑

n=0

entn =
∏

i

(1 + xit), (A.4)

H(t) =

∞
∑

n=0

hntn =
∏

i

1

1 − xit
, (A.5)

and h−1 = e−1 = h−2 = e−2 = . . . = 0. Then, for a partition R = (R1, R2, . . .),

eR = eR1eR2 · · ·
hR = hR1hR2 · · · .

For a partition R, the Schur function is defined as

sR(x) = det(hRi−i+j) = det(eRt
i−i+j). (A.6)

Let us introduce Littlewood-Richardson coefficients cP
QR as

sQ⊗R = sQsR =
∑

P

cP
QRsP , (A.7)

which have properties

cP
QR = cP t

QtRt = cP
RQ, cP

R• = δP
R , (A.8)

cP
QR = 0 for |P | 6= |Q| + |R|. (A.9)

It is also convenient to define multiple coefficient

cP
R1...Rn

=
∑

αi

cα1
R1R2

cα2
α1R3

cα3
α2R4

· · · cP
αn−2Rn

, (A.10)

in terms of which a multiple tensor product takes the form

R1 ⊗ . . . ⊗ Rn =
∑

P

cP
R1...Rn

P, (A.11)

Finally we define skew Schur functions

sQ/R =
∑

P

cQ
RP sP . (A.12)

For trivial representation R = •, we have

sQ/• = sQ.

and

If not Q ⊂ R ⇔ sR/Q = 0.
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For Schur functions, we have the following identities

sR(cx) = c|R|sR(x)

sR(qρ) = qκR/2sRt(qρ)

sR(qρ) = (−1)|R|sRt(q−ρ)

sQ(qρ)sR(qQ+ρ) = sR(qρ)sQ(qR+ρ). (A.13)

Skew Schur functions satisfy

sQ/R(cx) = c|Q|−|R|sQ/R(x)

sQ/R(qρ) = (−1)|Q|−|R|sQt/Rt(q−ρ). (A.14)

In addition, we have the summation formulas for Schur functions

∑

R

sR(x)sR(y) =
∏

i,j

1

1 − xiyj

∑

R

sR(x)sRt(y) =
∏

i,j

(1 + xiyj) (A.15)

and for skew Schur functions

∑

η

sQ/η(x)sR/η(y) =
∏

i,j

(1 − xiyj)
∑

η

sη/R(x)sη/Q(y)

∑

η

sQ/η(x)sR/η(y) =
∏

i,j

1

1 + xiyj

∑

η

sηt/R(x)sη/Q(y)

∑

η

sη/R(x)sη(y) = sR(y)
∑

µ

sµ(x)sµ(y)

∑

η

sηt/R(x)sη(y) = sR(y)
∑

µ

sµ(x)sµt(y)

∑

η

sR/η(x)sη/Q(y) = sR/Q(x, y),

∑

η

sR/η(x)sη(y) = sR(x, y). (A.16)

the last two sums being over partitions η such that Q ⊂ η ⊂ R.

For the special case a partition with a single row R = (R1, 0, 0, . . .), the Schur function

is related to the quantum dilogarithm as

sR=(R1,0,...)(q
ρ) = (−1)R1qR2

1/2ξ(q)L
((

R1 +
1

2

)

gs, q
)

(A.17)

where

ξ(q) =
∞
∏

i=1

1

1 − qi
.
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B. Hopf link expansion

Here we prove the many-row Hopf-link expansion formula (2.6) for the simplified case of n

branes on the positive slice only, whose positions determine the values of a1, . . . , an. Let

us recall, that the normalized crystal partition function in the present case is

Z̃(a1, . . . , an) = L(a1, q) . . . L(an, q) · (B.1)

·
(

1 − a1

a2

)(

1 − a1

a3

)

. . .

(

1 − a1

an

)

. . .

(

1 − an−1

an

)

.

In this case the statement (2.6) takes the form

Z̃(a1, . . . , an) =
∑

R1,...,Rn

aR1
1 . . . aRn

n s(Rn,Rn−1,...,R1)(q
ρ). (B.2)

We should note, that expansion contains Schur functions corresponding to ’improper’

partitions (with negative number of boxes, or not decreasing in length). But these are

taken into account in the proof below automatically, due to structure of Schur functions.

We prove (B.2) by induction on number of branes n. The first step in the induction is

the expression for the dilogarithm

L(a, q) =

∞
∑

R=0

aRhR(qρ), (B.3)

as a single variable a the sum is over one-row partitions of length R, and s(R,0,...) = hR.

In the second induction step, let us assume that Z̃(a1, . . . , an) is given by (B.2), and

we add one more brane at a0. Then

Z̃(a1, . . . , an, a0) = Z̃(a1, . . . , an)L(a0, q) ·

·
(

1 − a1

a0

)

. . .

(

1 − an

a0

)

. (B.4)

If we expand w.r.t. all ai and use (B.2) and (B.3), the coefficient at aR0
0 · · · aRn

n is equal

to (for now we skip arguments) (qρ))

hR0s(Rm,...,R1) − hR0+1

m
∑

i=1

s(̂i) + hR0+2

m
∑

i6=j

s(̂i,ĵ) − . . . hR0+ns(Rn−1,...,R1−1), (B.5)

where î means, that i’th variable Ri is replaced by (Ri − 1), for example

s(̂i,ĵ) = s(Rn,Rn−1,...,Ri−1,...,Rj−1,...,R1). (B.6)

In the first term in this expression no variable is reduced by 1, and in the last term all m

variables are reduced. In other terms several variables are reduced, and the sums are over

all possible combinations of choosing this number of variables from the set (R1, . . . , Rn).
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The final observation is that (B.5) is Laplace expansion of the determinant defining

s(R0,Rn,...,R1) along the first row (A.6)

s(R0,Rn,...,R1) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

hR0 hR0+1 . . . hR0+n

hRn−1 hRn . . . hRn+n−1
...

...
. . .

...

hR1−m hR1−n+1 . . . hR1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(B.7)

where double lines denote determinant. This completes the induction and proves (B.2).

In the more general case for branes in both legs a completely analogous proof can be

constructed.

B.1 Improper partitions

In the above expansion, it should be stressed that in general not all WPR correspond to

Hopf link invariants. They correspond only in the case when P and R are proper partitions,

i.e. if Rn ≥ Rn−1 ≥ . . . ≥ R1 ≥ 0, and similarly for the representation P . Otherwise WPR

are just coefficients resulting from the expansion, but generally these cannot be thought of

as Hopf link invariants. Nonetheless, functions sP involved in WPR are still given by the

determinant (A.6), and thus we will call them improper Schur functions.

Moreover, the summations over Ri and Pi in (2.6) don’t start from 0, because in the

crystal partition function expansions there are also terms with negative powers of ai, bi.

These negative powers arise only from prefactors for strings stretched between branes on

the same leg, which are of the form (1 − ai/aj), and there is always finite number of such

terms.

In fact, the easiest way to take care of them is to understand the summations in (2.6)

as running over all integers, positive and negative. The very structure of Schur’s functions,

together with the fact that hi = 0 for i < 0, will assure that only relevant terms will be non-

zero, and we get the correct result. In particular, this means that there will be partitions R

with ’negative number of boxes’ in some rows, Ri < 0. So if we expand determinant (A.6)

for the corresponding improper Schur functions sR, and use hi<0 = 0, we are left with

are Schur functions for partitions with lower number of rows, now only of positive length.

These new functions can also be proper or not, according to whether lengths of their rows

are properly decreasing.

Thus, if we put n branes on one leg, the crystal expansion in fact contains informa-

tion about all proper knot invariants, and finite number of improper knot invariants for

partitions with all number of rows 1, . . . , n.

C. Topological vertex formalism

In this appendix we introduce A-model topological vertex calculational framework. The

most convenient form of the vertex is representation basis, in which vertex amplitudes can

be expressed in terms of Schur functions. The general formula for topological vertex in the
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canonical framing is [1]

CR1R2R3 = q
1
2
(κR2

+κR3
)sRt

2
(qρ)

∑

P

sR1/P (qRt
2+ρ)sRt

3/P (qR2+ρ). (C.1)

The crucial property of CR1R2R3 in the canonical framing is cyclicity w.r.t. represen-

tations Ri. The above formula also immediately implies

CR1R2R3 = q
1
2

P

i κRi CRt
1Rt

3Rt
2
. (C.2)

The identities from appendix A lead to the following special cases, with some repre-

sentations involved being trivial •

CR•• = qκR/2sRt(qρ) = sR(qρ), (C.3)

CPR• = q
1
2
κRsP (qρ)sRt(qρ+P ) (C.4)

= q
κP
2

∑

η

sR/η(q
ρ)sP t/η(q

ρ). (C.5)

The vertex with one trivial representation is closely related to the leading term of the

Hopf Link invariant WPR, which also can be expressed in terms of Schur functions

WPR = qκR/2CPRt• (C.6)

= sP (qρ)sR(qρ+P ) (C.7)

= q
1
2
(κP +κR)

∑

η

sRt/η(q
ρ)sP t/η(q

ρ), (C.8)

and it is not difficult to show that

WPR(q) = (−1)|P |+|R|WP tRt(q−1). (C.9)

The important feature of the vertex is a framing ambiguity, which arises as a need

to specify an integer number for each stack of branes on a leg of C
3. The vertex in a

particular framing specified by numbers f1, f2, f3 corresponding to representations Ri on

different axes is given as

Cf1,f2,f3

R1R2R3
= (−1)

P

i fi|Ri|q
P

i fiκRi
/2CR1R2R3 , (C.10)

where |Ri| denotes number of boxes in the Young diagram for a given representation. The

canonical framing (C.1) corresponds to fi = 0.

It is also possible to reverse orientation of the branes on one leg, what can be interpreted

as changing branes to antibranes. To obtain vertex amplitude with an antibrane on the

first axis one should substitute

CPQR → (−1)|P |CP tQR, (C.11)

and similarly for any other leg.

To construct the full toric diagram, one has to glue together C
3 patches. Gluing

together just two patches gives a resolved conifold with Kahler parameter Q = qN = e−t,
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and the propagator is given by (−Q)|R|. The orientations of two glued axes must be

consistent, and sum over representations performed, what leads to

ZP 1
=

∑

R

C••Rt(−Q)|R|CR•• =
∑

R

sR(q−ρ)sR(Qqρ) = exp

(

−
∞
∑

k=1

Qk

k[k]2

)

. (C.12)

It is also possible, though a bit more complicated, to consider branes on internal legs

of toric diagram and configurations of several stacks of branes on one leg. In the case of

one stack of branes on a compact leg one more parameter d = gsD should be introduced,

which denotes the position of the brane along the compact leg, as measured from the left

vertex. To properly glue two vertexes with additional brane between them, two additional

summations must be introduced representing strings ending on the brane from the left and

from the right, so the relevant vertex factor takes the form
∑

R,QL,QR

C••R⊗QL(−1)sqfe−LCRt⊗QR•• TrQLV TrQRV −1 (C.13)

where a framing of the brane p has also been taken into account, so that

L = |R|t + |QL|d + |QR|(t − d), (C.14)

f =
p

2
κR⊗QL +

n + p

2
κRt⊗QR,

s = |R| + p|R ⊗ QL| + (n + p)|Rt ⊗ QL|. (C.15)

The additional number n = |v′ × v| is determined by planar directions of two axes v and

v′ of glued vertexes, and in all cases we consider it equals zero.

For more stacks of branes we need to specify a position of each stack as di = gsDi. The

holonomy matrix corresponding to branes at di is denoted Vi. In fact, to get agreement

with crystal results we will need to absorb di into Vi. Moreover, in this case we have

to choose different representations Ri for each stack of branes, and for a given leg of the

vertex consider the tensor product of representations CP,Q,⊗iRi . In addition, for each pair

of branes at di, dj we have to introduce an additional factor from strings stretched between

them
∑

P

(−1)|P | TrP Vi TrP tV −1
j . (C.16)

If there are several branes on an internal leg, also summations from the left and right

vertexes for each brane must be introduced, as well as an overall summation over |R| as

in (C.13).

It is also important to make clear how summations over tensor products should be

understood. The Hopf Link with a single factor of |P1 ⊗P2| can be obtained from a fusion

rule

WP1⊗P2,R =
∑

α

cα
P1P2

WαR =
∑

α

q
κα+κR

2 cα
P1P2

sαt/η(q
ρ)sRt/η(q

ρ), (C.17)

and then related to topological vertex by (C.6). When a few factors of |P1 ⊗ P2| appear,

the internal summation over α should also be introduced,9 with each such factor replaced

9We thank Marcos Marino for explaining this point.

– 29 –



J
H
E
P
0
1
(
2
0
0
6
)
0
4
0

by α. For example, for two stacks of branes on one leg of C
3 in (−1) framing we have

CP1⊗P2,R,•(−1)−|P1⊗P2|q−
κP1⊗P2

2 =
∑

α

cα
P1P2

sαt/η(q
ρ)sR/η(q

ρ)(−1)|α|

= (−1)|P1|+|P2|
∑

α

cα
P1P2

sαt/η(q
ρ)sR/η(q

ρ), (C.18)

where two factors of qκα/2 (from vertex expression and (−1) framing) canceled each other,

and formulas (A.8) and (A.9) have been used.

The internal summation arising in quantities with tensor product involved is a crucial

and subtle issue. In particular, knot invariants in different framings but without tensor

product differ just by an overall sign and factors of q. On the other hand, the summation

implicit in tensor product formulae changes the structure of polynomials representing knot

invariants. For example, in canonical framing we have

C1⊗1,1,• = W1⊗1,1,• =
(q2 − q + 1)2

(q − 1)3
√

q
. (C.19)

On the other hand, in framing (−1, 0)

C1⊗1,1,•(−1)|1⊗1|q−
κ1⊗1

2 = W1⊗1,1,•(−1)|1⊗1|q−
κ1⊗1

2

= W1,2 q−1 + W1,2t q =
(2q2 − 3q + 2)

√
q

(q − 1)3
, (C.20)

and this is also precisely the coefficient which we get from crystal expansion without the

factor (C.16) (1− a1
a2

) (and up to q inversion) with two branes at a1, a2 on one slice of the

crystal and antibrane on the other slice.

References

[1] A. Okounkov, N. Reshetikhin and C. Vafa, Quantum Calabi-Yau and classical crystals,

hep-th/0309208.

[2] A. Iqbal, N. Nekrasov, A. Okounkov and C. Vafa, Quantum foam and topological strings,

hep-th/0312022.

[3] D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, Gromov-Witten theory and

Donaldson-Thomas theory, I-II, math.AG/0312059, math.AG/0406092

[4] M. Aganagic, A. Klemm, M. Marino and C. Vafa, The topological vertex, Commun. Math.

Phys. 254 (2005) 425 [hep-th/0305132].

[5] T. Okuda, Derivation of Calabi-Yau crystals from Chern-Simons gauge theory, JHEP 03

(2005) 047 [hep-th/0409270].

[6] N. Saulina and C. Vafa, D-branes as defects in the Calabi-Yau crystal, hep-th/0404246.

[7] R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor.

Math. Phys. 3 (1999) 1415 [hep-th/9811131].

[8] H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000)

419 [hep-th/9912123].

– 30 –

http://xxx.lanl.gov/abs/hep-th/0309208
http://xxx.lanl.gov/abs/hep-th/0312022
http://xxx.lanl.gov/abs/math.AG/0312059
http://xxx.lanl.gov/abs/math.AG/0406092
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C254%2C425
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C254%2C425
http://xxx.lanl.gov/abs/hep-th/0305132
http://jhep.sissa.it/stdsearch?paper=03%282005%29047
http://jhep.sissa.it/stdsearch?paper=03%282005%29047
http://xxx.lanl.gov/abs/hep-th/0409270
http://xxx.lanl.gov/abs/hep-th/0404246
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1415
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1415
http://xxx.lanl.gov/abs/hep-th/9811131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB577%2C419
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB577%2C419
http://xxx.lanl.gov/abs/hep-th/9912123


J
H
E
P
0
1
(
2
0
0
6
)
0
4
0

[9] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino and C. Vafa, Topological strings and

integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085].

[10] A. Iqbal and A.-K. Kashani-Poor, The vertex on a strip, hep-th/0410174.

[11] M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs,

hep-th/0012041.

[12] M. Marino, Les Houches lectures on matrix models and topological strings, hep-th/0410165.

[13] R. Gopakumar and C. Vafa, M-theory and topological strings, I, hep-th/9809187; M-theory

and topological strings, II, hep-th/9812127.

[14] J.M.F. Labastida and M. Marino, Polynomial invariants for torus knots and topological

strings, Commun. Math. Phys. 217 (2001) 423 [hep-th/0004196];

J.M.F. Labastida, M. Marino and C. Vafa, Knots, links and branes at large-N , JHEP 11

(2000) 007 [hep-th/0010102];

J.M.F. Labastida and M. Marino, A new point of view in the theory of knot and link

invariants, math.QA/0104180;

M. Marino and C. Vafa, Framed knots at large-N , hep-th/0108064.

[15] R. Dijkgraaf, A. Sinkovics and M. Temurhan, Universal correlators from geometry, JHEP 11

(2004) 012 [hep-th/0406247].

[16] S. de Haro, Chern-Simons theory, 2d Yang-Mills and Lie algebra wanderers, Nucl. Phys. B

730 (2005) 312 [hep-th/0412110].

– 31 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C261%2C451
http://xxx.lanl.gov/abs/hep-th/0312085
http://xxx.lanl.gov/abs/hep-th/0410174
http://xxx.lanl.gov/abs/hep-th/0012041
http://xxx.lanl.gov/abs/hep-th/0410165
http://xxx.lanl.gov/abs/hep-th/9809187
http://xxx.lanl.gov/abs/hep-th/9812127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C217%2C423
http://xxx.lanl.gov/abs/hep-th/0004196
http://jhep.sissa.it/stdsearch?paper=11%282000%29007
http://jhep.sissa.it/stdsearch?paper=11%282000%29007
http://xxx.lanl.gov/abs/hep-th/0010102
http://xxx.lanl.gov/abs/math.QA/0104180
http://xxx.lanl.gov/abs/hep-th/0108064
http://jhep.sissa.it/stdsearch?paper=11%282004%29012
http://jhep.sissa.it/stdsearch?paper=11%282004%29012
http://xxx.lanl.gov/abs/hep-th/0406247
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB730%2C312
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB730%2C312
http://xxx.lanl.gov/abs/hep-th/0412110

